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Object based classification 
of a riparian environment using 
ultra‑high resolution imagery, 
hierarchical landcover structures, 
and image texture
Kain Kutz1*, Zachary Cook2 & Marc Linderman2

Land cover mapping is an important part of resource management, planning, and economic 
predictions. Improvements in remote sensing, machine learning, image processing, and object based 
image analysis (OBIA) has made the process of identifying land cover types increasingly faster and 
reliable but these advances have not been able to utilize all of the information encompassed within 
ultra-high (sub-meter) resolution imagery. There have been few known attempts to try and maximize 
this detailed information in high resolution imagery using advanced textural components. Hierarchical 
land classes are also rarely used as an attribute within the machine learning step of object-based 
image analysis. In this study we try to circumnavigate the inherent problems associated with high 
resolution imagery by combining well researched data transformations that aid the OBIA process 
with a seldom used texture transformation in Geographic Object Based Image Analyses (GEOBIA/
OBIA) known as the Gabor Transform and the hierarchal organization of landscapes. We will observe 
the difference made in segmentation and classification accuracy of a random forest classifier when we 
fuse a Gabor transformed image to a Normalized Difference Vegetation Index (NDVI), high resolution 
multi-spectral imagery (RGB and NIR) and Light Detection and Ranging (LiDAR) derived canopy height 
model (CHM) within a riparian area in Southeast Iowa, United States. Additionally, we will observe 
the effects on classification accuracy when adding multi-scale land cover data to objects. Both, the 
addition of hierarchical information and Gabor textural information, could aid the GEOBIA process in 
delineating and classifying the same objects that human experts would delineate within this riparian 
landscape.

Remote sensing has played a critical role in the development of the science of landscape ecology1. Satellite and 
aerial imagery allow the quantification not only of the composition, or amounts of different land covers, of a land-
scape, but also the spatial structure or arrangement of land cover as well. Visual interpretation of high-resolution 
imagery has been crucial in the delineation and verification of land cover, particularly in complex ecosystems. 
Automated approaches to classifying imagery, such as Geographic Object Based Image Analysis (GEOBIA), is 
increasingly being used to assess historical aerial, UAV, and high-resolution limited-spectral satellite data2–4. 
However, its performance varies across different landscapes. For example, in most object based image analyses of 
urban areas, classification accuracy is above 90%3,5–9 while within a natural multipart landscape, with little human 
influence, it is expected that the accuracy will be well below 90%5,10–14. The goal of this study is to examine the use 
of hierarchical and image transformations to object delineation and classification in complex natural landscapes.

GEOBIA replicates the process of human object recognition using spatial information by first creating individ-
ual polygons or objects (segmentation). Statistics about these objects, such as edge complexity and spectral vari-
ance, are then used to determine which class the object belongs (classification). Utilizing the natural hierarchical 
organization within ecosystems could provide additional information which improves classification accuracies. 
The primary instances of developing a hierarchical scheme into the GEOBIA process is to reduce segmentation 
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errors by decreasing noise or attempting to increase classification accuracy using either a rule-based classifier or 
fuzzy classifier15–20. This approach does not leverage the information supported by landscape hierarchy theory, 
a framework for scaling and understanding the relationship between spatial pattern and ecological process.

Within landscape ecology, O’Neill et al.21 conducted a meta-analysis of hierarchal frameworks in biology. 
They concluded that the various scales within an ecological system define, or limit, one another in a way that 
could support that a super-object could be a useful property in defining sub-objects within a landscape. If 
multiple classifications are performed at several scales, the attributes of larger scaled objects (i.e. super-objects) 
can be tied to the smaller scaled objects (i.e. sub-objects), thus potentially increasing the classification accuracy 
of the sub-objects. This approach uses what we know about the organization of complex multipart ecosystems. 
However, remote sensing analytical techniques, such as GEOBIA, have not incorporated hierarchical landscape 
ecology theory in classification methodologies nearly as in depth. The primary use of hierarchical landscape 
organization in OBIA is the iterative process of classifying a landscape into sub-classes from super classes. An 
example of this approach can be found in Mao et al.22. In their paper they first classified their segmented image 
into wetland/non-wetland classes and then classified the wetland objects into smaller and smaller subclasses 
using thresholds or rule-based classifiers.

As opposed to dissecting classified objects into smaller subclasses, in this paper we use the information 
from a separate classification that uses a higher-level class schema to contribute to the classification of smaller 
sub-objects that uses a lower-level class schema. This allows us to examine the role of hierarchical information 
inherent in natural landscapes and image processing techniques to better develop automated replication of visual 
interpretation of natural landscapes. Specifically, we examine the impact of hierarchical segmentation on object 
classification, relative to a multi-scale visual classification, of high-resolution aerial imagery.

Segmenting images into hierarchical objects consistent with visual delineation could also be enhanced 
by image enhancement that is consistent with human interpretation. The Gabor textural transformation has 
been lauded for replicating the same directional textural information that humans use to identify and interpret 
objects23–25. However, few studies have been conducted that investigate the use of this transformation for object-
based image analysis26,27.

We aim to examine the accuracy improvement from hierarchical delineation and classification of complex 
floodplains by combining well-researched data transformations, that aid the OBIA process, with a seldom-used 
texture transformation in GEOBIA known as the Gabor Transform. We used a random forest classifier, three 
band (near-infrared, red, and green) 7.9-cm imagery, Normalized Difference Vegetation Index (NDVI) and a 
Light Detection and Ranging (LiDAR) derived canopy height model (CHM) within a riparian area in Southeast 
Iowa; allowing us to observe the difference in segmentation and classification accuracy that a Gabor transform 
and hierarchical land cover data can provide to object based analysis.

Data and study area
Data.  The aerial imagery, used for our study, is a three band (near-infrared, red, and green) 7.9-cm resolu-
tion image taken with an Applanix 439 Digital Sensor System on May 18, 2014. The images were taken by the 
U.S. Fish & Wildlife Service, Region 3, and the U.S. Geological Survey’s Upper Midwest Environmental Sciences 
Center. The CHM used in this paper is from the Iowa LiDAR Project28. LiDAR data was downloaded as several 
four-square kilometer, las tiles that encompassed the study area and was originally collected on May 5, 2010. The 
files were converted into a last-return digital terrain model (DTM) TIFF files using the ArcGIS Lidar Analyst 
Extension. The CHM was then created by subtracting the DTM from a digital surface model (DSM) derived 
from the first return values. All imagery and vector files were projected and processed within the Universal 
Transverse Mercator zone 15 spatial reference. All sets of data were collected during leaf-on conditions. Refer-
ence polygons were hand delineated and classified by experts from US Fish and Wildlife Service Region 3, Port 
Louisa National Wildlife Refuge, and the USGS Upper Midwest Environment Sciences Center. This data allowed 
us to perform a two-tier classification as the visual classification used two object classification schemas; a broad 
7-class scheme and a narrower 13-class scheme. Using these schemas to train and base our classifications upon, 
we examined the improvement in classification accuracy of floodplain sub-objects.

Study area.  The Horseshoe Bend Division of the Port Louisa National Wildlife Refuge (NWR) is a mixture 
of grass and wetland habitat along the Iowa River four miles upstream from the confluence of the Iowa and Mis-
sissippi River. This 2606-acre NWR is composed of grassland, wet meadows, forest, and semi and permanently 
flood emergent wetland habitat. Prior to the 1993 flood, this land was primarily used for agricultural purposes 
and was protected from flooding by a levee along the Iowa River. Since then, the levee has broken along the 
upper reach where the Iowa River intersects the NWR making the land susceptible to frequent inundation. This 
study area is in Port Louisa County Southeast of Wapello, Iowa (see Fig. 1).

Methodology
Gabor transform.  The Gabor transform has rarely been used as a feature in a landscape classification OBIA 
approach but has been used in other OBIA processes such as fingerprint enhancement and human iris detection 
and for data dimensionality reduction24,29–35. Gabor filters are a bandpass filter applied to an image to identify 
texture. The different Gabor bandpass filters mathematically model the visual cortical cells of mammalian brains 
and thus is expected to improve segmentation and classification accuracy when compared to a human delineated 
and classified image26,27.

Samiappan et al.36 compared Gabor filters to other texture features (grey-level co-occurrence matrix, seg-
mentation-based fractal texture analysis, and wavelet texture analysis) within the GEOBIA process, of a wet-
land, using sub-meter resolution multispectral imagery. These Gabor filters performed comparably, in overall 
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classification accuracy and Kappa coefficients, with other texture features. However, they were still outperformed 
by all other texture features. This study did not use any other data for analysis for determining the performance 
of Gabor filters when paired with data sources such as spectral, NDVI, or LiDAR36,37. Wang et al.38 paired a 
Gabor transformation with a fast Fourier transformation for edge detection on an urban landscape image that 
contained uniform textures with promising results. Su30 used the textural attributes derived from Gabor filters 
for classification but had similar results to Samiappan et al.36 where they found that Gabor features were one of 
the least useful/influential that contributed to the classification of a mostly agricultural landscape.

Gabor filters are a Fourier influenced wavelet transformation, or bandpass filter, that identifies texture as 
intervals in a 2-D Gaussian modulated sinusoidal wave. This modulation differentiates the Gabor transform from 
the Fourier transform23,26. These Gabor transformed wavelets are parameterized by the angle at which they alter 
the image and the frequency of the wavelet. Rather than smoothing an image at the cost of losing detail through 
Fourier transforms or median filters, Gabor transformed images identify the repeated pattern of localized pixels 
and gives them similar values if they are a part of the same repeated sequence. Gabor features can closely emulate 
the visual cortex of mammalian brains that utilize texture to identify objects26,27. This is based on the evaluation 

Figure 1.   Horseshoe bend division of the Port Louisa NWR (study area). Software: ArcMap (10.x).
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of neurons associated with the cortical vertex that respond to different images or light profiles39. Marcelja27 
identified that cortical cells responded to signals that are localized frequencies of light like what is represented 
by the Gabor transformations. Within the frequency domain, the Gabor transform can be defined by Eq. (1):

where f  is the user-determined frequency (or wavelength); θ is the user-determined orientation at which the 
wavelet is applied to the image; γ and n are the standard deviations of the Gaussian function in either direction23,38. 
These parameters define the shape of the band pass filter and determines its effect on one-dimensional signals. 
Daugman26, created a 2-D application of this filter in Eq. (2);

where u’ = ucos − vsin θ θ and v’ = usin − vcos θ.
In order to implement Gabor filters on multi-band spectral images, we used Matlab’s Gabor feature on the 

University of Iowa’s Neon high performance computer (HPC)40 which has up to 512 GB of RAM, which was 
necessary for processing these images. The first implementation of Gabor filters was performed on a 1610 × 687 
single band pixel array (a small subset of the study area), a filter bank of 4 orientations and 8 wavelengths, on a 
32 GB RAM computer, and took approximately 8 h to complete. Filter banks are a set of Gabor filters with differ-
ent parameters that is applied to the spectral image and are required to identify different textures with different 
orientations and frequencies. By lowering the number of wavelengths from 8 to 4 on an 8128 × 8128 single band 
pixel array on the same machine 32 GB RAM, the processing was reduced to an hour. Using the HPC, this was 
further reduced to approximately 90 s using the same filter bank. Before implementing on the HPC, the original 
spectral image was divided into manageable subsets with overlap in order to prevent ‘edge-effect.’ These images 
were converted to greyscale by averaging values across all three bands33. When wavelengths become too long, 
they no longer attribute the textural information desired from the image and therefore add unnecessary comput-
ing time. The wavelengths that were used for the filter bank were selected as increasing powers of two starting 
from 2.82842712475 ( 24/

√
2 ) up to the pixel length of the hypotenuse of the input image. From this, we used 

only 2.82842712475, 7.0710678, 17.6776695, and 44.19417382. The directional orientation was selected as 45° 
intervals, from 0 to 180: 0, 45, 90, 135. These parameters were based on the reasoning outlined within Jain and 
Farrokhina25. More directional orientations could have been included but four were used for computational 
efficiency. The radial frequencies were selected so that they could capture the different texture in the landscape 
represented by consistent changes in pixels values within each landcover class. When frequencies are too wide or 
fine of a width they no longer represent the textures of the different landcover classes and thus are not included. 
This selection of filter bank parameters are similar or the same as other studies that look into the use of Gabor 
features for OBIA25,30,31.

From the different combinations of parameters (four directions and four frequencies) in the Gabor Transform 
filter bank, sixteen magnitude response images were created from the converted greyscale three band average 
image. To limit high local variance within the output Gabor texture images, a Gaussian filter was applied. The 
magnitude response values were normalized across the 16 different bands so that a Principal Component Analysis 
(PCA) could be applied. The first principal component of the PCA, from these Gabor transformed images, was 
used for this study since it limits the computation time to process 16 separate Gabor features, in addition to 
the other data sources, while still retaining the most amount of information from the different Gabor response 
features. The Gabor band that was used for this study can be viewed in Fig. 2.

Segmentation.  For this study, we used the watershed algorithm for the segmentation of GEOBIA, imple-
mented by ENVI version 5.0 Feature Extraction tool, due to its ubiquitous use within GEOBIA, its ability to 
create a hierarchy of segmented objects, and support within the literature as a reliable algorithm37,41–43. The 
watershed algorithm can either use a gradient image or intensity image for segmentation. Based on the observed 
results, this study used the intensity method. The intensity method averages the value of pixels across bands. 
Scale, a user-defined parameter, is selected to identify the threshold that decides if a given intensity value within 
the gradient image can be a boundary. This allows the user to decide the size of the objects created. A secondary, 
user-defined, parameter defines how similar, adjacent, objects need to be before they are combined or merged. 
The user arbitrarily selects the parameter value based on how it reduces both under and over segmentation. The 
parameters selected for this study were visually chosen based on a compromise between over and under segmen-
tation relative to the hand demarcated objects.

The merging of two separate objects was based on the full lambda schedule where the user selects a merging 
threshold ti,j which is defined by Eq. (3):

where Oi is the object of the image, |Oi| is the area of i , ui is the average of object i , uj is the average of object 
j , �ui − uj� is the Euclidean distance between the average values of the pixel values in regions i  and j , and 
length

(

ϑ
(

Oi ,Oj

))

 is the length of the shared boundary of Oi and Oj.
To compare the segmentation of a riparian landscape, with and without Gabor features, we conducted seg-

mentation on two separate sets of data. One dataset was a normalized stacked layer of NDVI and CHM (see 
Fig. 3) with the original multispectral image used as ancillary data; the other dataset differed only by the inclusion 
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of the Gabor feature. For both instances, the bands were converted to an intensity image by averaging across 
bands rather than being converted into a gradient image for segmentation. The dataset that included the Gabor 
features had a scale parameter set at 30 with merge settings at 95 and 95.7 for the sub and super-objects, respec-
tively. The dataset that did not include the Gabor features had a scale parameter of 10 with merge settings at 95.6 
and 98.5 for the sub and super-objects, respectively. This resulted in the creation of 87,198 and 62,905 segments 
for the sub and super objects, respectively, that were created when the Gabor feature was included. 191,050 and 
51,664 segments were created for the sub and super objects when the Gabor features, respectively, were not 
included within the segmentation process. As you will see in the next section, these segments also represent the 
number of training data that will be included within the supervised classification.

To create a hierarchy of land cover classes, two sets of segmentation parameters needed to be selected for each 
dataset. One set of parameters would be used for the sub-objects within the hierarchy and the other set would 
be used to create super-objects. All parameters used the intensity and full lambda schedule algorithms for the 
watershed method. The only setting that changed between the sub and super-objects, for either dataset, was the 
merge parameter which helped maintain similar boundaries as much as possible. Despite this, boundaries could 
moderately change due to the Euclidean distance, between the pixel values of i and j , changing from the merging 
of objects; causing ti,j to cross the threshold which results in a new boundary being drawn. A representation of 
these results can be viewed and visually compared to the hand demarcated objects in Fig. 4.

Figure 2.   Gabor transformation. Gabor transformed image of study area derived from original image using the 
first principal component of all gabor outputs using the filter bank parameters. Software: ArcMap (10.x).
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Training data.  The training data, used for this study, is the transfer of class attributes from hand demarcated 
and classified segments to automatically segmented objects based on the majority overlap of the hand demar-
cated segments. Experts identified them using two different classification schemes referenced from the General 
Wetland Vegetation Classification System44. The 7-class scheme within this system identified objects of either 
being forest, marsh, agriculture, developed, open water, grass/forbs, or sand/mud. The 13-class scheme identi-
fied objects of either being agriculture, developed, grass/forbs, open water, road/levee, sand/mud, scrub-shrub, 
shallow marsh, submerged aquatic vegetation, upland forest, wet forest, wet meadow, and wet shrub. Not every 
class from the 7-class scheme will have a sub-class (i.e. developed, open water) but some do for example wet and 
upland forest are sub-objects of the forest class and wet meadow and shallow marsh are sub-objects of marsh. 
Figure 5 visually illustrates both classification schemes across the study area.

ENVI’s feature extraction tool calculates several landscape, spectral, and textural metrics. These attributes 
were used for each random forest classifier. The Gabor and Hierarchical features will be included selectively to 
be able to compare their contributions to the (out-of-bag) OOB classification errors. When Gabor features are 
included within the classification, they are computed the same way as the other image bands.

Figure 3.   CHM and NDVI. LiDAR derived canopy height model (top) and normalized difference vegetation 
index derived from original spectral image. Software: ArcMap (10.x).
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Random forest.  The random forest classifier was implemented in R using the random forest module45. 
The number of trees, that were randomly generated, was large enough (n = 250) to where the Strong law of large 
numbers would take effect as indicated by the decrease in the change of accuracy. The default number of vari-
ables randomly sampled as candidates at each split variable (mtry parameter) was the total number of variables 
divided by 3 for each dataset. R also generates two separate variable indices: mean decrease in accuracy and 
mean decrease Gini. Mean decrease in accuracy refers to the accuracy change in the random forest when a single 
variable is left out. This is a practical metric to determine the usefulness of a variable. The Gini index measures 
the purity change within a dataset when it is split based upon a given variable within a decision tree.

The random forest classification accuracy will be based on the OOB error. The random forest algorithm 
trains numerous decision trees on random subsets of the training set leaving out a number of training samples 
when training each decision tree. The samples that are left out of each decision tree are then classified by the 
decision tree that they were not included within during the training step. The OOB error is the average error of 
each predicted bootstrapped sample across the ensemble of decision trees within the random forest algorithm.

Figure 6 illustrates how the Gabor and hierarchal features were included within the classification of the super 
and sub-objects.

Figure 4.   Automated and manual segmented comparison. Juxtaposition of hand delineated, sub-objects, and 
super-objects for segments generated using the Gabor features. Software: ArcMap (10.x).
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Hierarchical scheme.  To attribute the hierarchical structure to the sub-objects, we first classified the larger 
segments that were created with and without the Gabor features using the broader 7-class scheme. These clas-
sified super objects were then converted to raster to calculate the majority overlap with the smaller sub-objects. 
This gave the sub-objects an attribute, the broader 7-class scheme, that could be used to contribute to the clas-
sification of the sub-objects with the finer 13-class scheme. This builds the hierarchical relationship between the 
two class schemes into the supervised classification of the sub-objects. Figure 6 illustrates how the hierarchal 
structure was included within two of the four sub-object’s list of features used within classification. This meth-
odological approach aligns with O’Neill et al.21 landscape ecology principle that a super-object’s class could be a 
useful property in defining or predicting a sub-object. This is also different than the more common rule-based 
approach of iteratively classifying the landscape into smaller and smaller sub-classes22.

Segmentation assessment.  Most studies rely upon the accuracy assessment of their classifiers to provide 
support for their analysis results. However, this does not provide evidence whether a new data fusion technique 
improves the ability to delineate objects of interest within an image. To assess the performance of our segmented 

Figure 5.   Hand delineated objects of both scales. Software: ArcMap (10.x).
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polygons, this study evaluated the segments created with and without the Gabor feature using a method high-
lighted in Xiao et al.37.

Our segmentation results were evaluated using an empirical discrepancy measure, used frequently in image 
segmentation evaluation37,46,47. Discrepancy measures utilize ground truth images that represent the “correct” 
delineated/classified image to compare the semi-automated image results. In our study, the objects that were 
delineated and classified by experts from the U.S. Fish and Wildlife Service, were used as training data for our 
random forest classifier and as ground truth for the discrepancy measure. The discrepancy measure used the 
percentage of right segmented pixels (PR) in the whole image. To calculate PR, we converted the classified seg-
mented and ground truth polygons to raster and measured the ratio of incorrect pixels to total amount of pixels 
which was converted to a percentage.

Additionally, landscape metrics were calculated using FRAGSTATS48, an open source program commonly 
used for calculating landscape metrics. FRAGSTATS computed these metrics from thematic raster maps that 
represent the land cover types of interest. These thematic classes, used for analysis, were the classified objects 
at both the super and sub-object level. Since we are not attempting to compare the segmentation results for any 
specific class or area, we calculated metrics on a landscape level. Landscape metrics will represent the segmenta-
tion patterns for the entire study area.

FRAGSTATS can calculate various metrics representing different aspects of the landscape. The metrics for 
analysis attempts to understand object geometry. The metrics calculated, for these analyses, were the average 
and standard deviation for the area (AREA), the fractal dimension index (FRAC), and the perimeter area ratio 
(PARA). The number of patches (NP) was also included in each result. To take a more landscape centric approach, 
the area weighted mean was chosen over a simple average.

Results
The following will present the empirical results with comparisons between the OOB error, the random forest 
classification, and segmentation discrepancy.

Segmentation results.  Like the classification results, Table 1 shows the PR segmentation results of the 
super objects, with and without the Gabor feature, with all features included (spectral, CHM, NDVI). Table 2 
shows the PR segmentation results for the sub-objects. The inclusion of the Gabor feature for the super objects 
made very little difference (0.03 percentage points) in the segmentation results according to the PR metric. In the 
sub-object case, the inclusion of the Gabor feature greatly decreased segmentation performance.

Classification results.  Table 1 exhibits the OOB classification results from the random forest classifier of 
the super objects, with and without the Gabor feature, with all features included (spectral, CHM, NDVI). These 
results were used as the hierarchical features for the sub-objects. The sub-object’s OOB classification results can 

Figure 6.   Classification procedure. Schematic flow chart illustrating how the Gabor and hierarchal features 
were included within the classification of the super and sub-objects. OOB classification error included in 
parenthesis.

Table 1.   Out-of-bag error (super). Out-of-bag error results from the random forest classifier and percentage 
of right segmented pixels (PR) in the whole image for the super-objects.

Feature Out-of-bag error (%) Pr %

Without gabor 16.15 21.65

With gabor 18.59 21.62
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be viewed in Table 2. As shown, the only instance when the inclusion of the Gabor feature improved classifica-
tion results, for both the super and sub-objects, was when the hierarchical feature was included. The hierarchal 
feature improved accuracy in both instances but was further improved when combined with the Gabor feature, 
resulting with the best performance of the four datasets.

Landscape metrics.  Results for the landscape metric analyses can be seen in Table  3. The differences 
between sub and super objects were as expected, with super objects having fewer patches than the sub-objects 
and area weighted mean being larger for the super objects except for sub-objects created with the Gabor fea-
tures. The sub-objects created with the Gabor features had area averages that were greater than any other results, 
including the human segmented results, which is due to large continuous patches of wet forests. Additionally, 
these instances had the largest standard deviations in patch size. This indicates that there was a broad mixture 
of large and small patches.

When observing the automated results for the super-objects, it appears that not including the Gabor features 
provides similar results to the human segmented objects. The only instance where the inclusion of Gabor features 
makes the segmentation similar to the human segmented objects is the number of patches, which can also be 
a measure of landscape fragmentation. Average area and both measures of edge or shape complexity (FRAC 
and PARA) both show that the exclusion of Gabor features cause segments to be more similar to the human 
segmented objects.

Similar observations can be made for the sub-objects. In most cases, instances where the Gabor feature was 
excluded resulted in similar landscape metrics to the human segmented objects. Furthermore, the inclusion of 
Gabor features had a higher number of similar patches as the human segmented instances for the sub-objects. The 
exclusion of Gabor features severely over fragment the landscape whereas the inclusion of Gabor features slightly 
under-fragmented it. It was observed that when the Gabor features were included within the segmentation, the 
areas classified as wet forest (a significant proportion of land cover in the study area) were delineated into large 
patches. When the Gabor features was not included, the wet forest was over fragmented which contributed to 
the large number of patches. A characteristic of the wet forest class in the study area is that they existed as large 
continuous chains and perhaps the first principal component did a good job at capturing the textural attribute of 
this class. In future studies, more principle components should be included on the chance that they can capture 
the textural attributes of the other classes better than the first principal component alone.

Discussion
Our study yields valuable information to the inclusion of hierarchically organized vectors; it provides accuracy 
estimates for classified objects with and without the inclusion of hierarchal attributes. Of the identified papers 
that used hierarchical segmentation, few included hierarchical attributes in their object classification18,49,50 and 
only one included the accuracy estimates with and without the inclusion of hierarchal attributes15. Other studies 
used one segmentation scale to guide the segmentation results of the next finer or broader scale16,17,19,51. Antunes 
et al.15  report agreed with our results in that the inclusion of hierarchical attributes increased classification 

Table 2.   Out-of-bag (Sub). Our-of-bag error results from the random forest classifier and percentage of right 
segmented pixels (PR) in the whole image for the sub-objects.

Feature Out-of-bag error Pr %

Without Gabor without hierarchy 22.53% 13.99%

With Gabor without hierarchy 23.01% 71.63%

Without Gabor with hierarchy 16.11% 13.50%

With Gabor with hierarchy 12.71% 69.50%

Table 3.   Landscape metrics. Calculated landscape metrics for human segmented objects and all instances 
of the automated segmented objects. NP number of patches, AREA square area of patch (m2), FRAC​ fractal 
dimension index of a patch, PARA​ perimeter area ratio of a patch, AM area weighted mean, SD standard 
deviation.

NP AREA_AM AREA_SD FRAC_AM FRAC_SD PARA_AM PARA_SD

Gab super 62,905 48.83 0.92 1.385 0.362 1382.58 16,912.97

Gab sub 87,198 157.36 1.40 1.345 0.365 1215.01 14,595.74

GAB sub Hier 87,225 155.03 1.39 1.342 0.366 1216.48 14,717.95

NDVI super 51,664 46.48 0.99 1.366 0.319 1166.51 16,133.02

NDVI sub 191,050 16.43 0.31 1.368 0.290 2044.08 12,614.72

NDVI sub Hier 189,106 16.89 0.31 1.367 0.290 2024.65 12,638.21

Control super 87,019 39.22 0.70 1.330 0.276 1096.12 9329.83

Control sub 104,549 20.33 0.46 1.230 0.259 1278.33 10,362.95
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accuracies considerably. Laiberte et al.50, Laiberte et al.18, and Laiberte et al.49 supported our findings by stating 
that including hierarchical attributes visibly improved their results50.

Observing both variable indices, the Gini and mean decrease in accuracy index, each instance the hierarchi-
cal features were included as an attribute for the sub-objects, the hierarchical features were indicated as provid-
ing more predictive power relative to the other included features. This coincides with the increase in accuracy 
when these features were included and, therefore, does not provide sufficient evidence that hierarchical features 
introduce noise into the dataset but rather provide valuable predictive information. This is contrary to the results 
observed when Gabor features were included, in the random forest, for predicting super-objects. The mean 
decrease in accuracy index indicated a high predictive power for the Gabor features, and an increased OOB error.

Gabor features did not provide additional information for increasing classification accuracies or improve 
segmentation results according to the sub-objects’ PR metric. The super-objects’ PR metric decreased insignifi-
cantly when Gabor features were included in the segmentation step. The PR metrics for the sub-objects display 
a significant decrease in segmentation accuracy when Gabor features are included. Based on these results, Gabor 
features should not be included in the segmentation step of the GEOBIA process. According to these results, 
Gabor features should not be included as part of the training and classification unless hierarchical features are 
included.

It is unclear to the authors why the inclusion of Gabor features improved the classification results only in the 
instance when hierarchical features are included. According to the Gini index and mean decrease in accuracy, 
the random forest algorithm utilized the Gabor features slightly more when hierarchical features were included 
than when they were not suggesting that the Gabor features improved the classification. When Gabor features 
were included for the other sub-object datasets that did not include hierarchical features, these same indices 
showed that Gabor features were utilized very little by the random forest algorithm (in addition to decreasing 
their accuracy). Similar effects were found when Gabor features were included within a patch based land cover 
analysis33. It is suggested that further research is conducted to observe why Gabor features have the opposite 
effect on classification when hierarchical features are included.

Limitations of this analysis of the segmentation results are as follows. To begin, the metrics used to evaluate 
segmentation results are still being developed. Most segmentation evaluations within geography use discrepancy 
measures, based off a classified ground truth image37,46,47,52,53. These measures depend on the correct classification 
of the objects and heavily relies on the accuracy of the classifier rather than measuring the quality of boundaries 
created by an algorithm. One proposed method is to measure the distance between the boundaries of the ground 
truth images and those generated by the proposed algorithm.

Another limitation is that most empirical methods for segmentation evaluation are based on ground truth 
images that are generated by human subjects, who subjectively delineate image object boundaries. Human inter-
pretation can be inconsistent, biased, and differ from person to person despite any expert status. The PR metric 
is also influenced by the correct classification of the objects. One reason object-based analysis is widely used is 
that it produces consistent, predictable, and reproducible results. Rather than relying on correctly classified pixels 
for segmentation evaluation, object-based image analysis should begin using distance to reference boundaries54. 
Additionally, most users conducting an object-based image analysis, to aid in decision-making process, do a 
considerable amount of post-processing (i.e. dissolving small segments and holes, smoothing, merging) which 
could cause the PR metric, and other metrics to observe segmentation results, to change.

Natural multipart landscapes are complicated systems that have spatially interconnected parts that influence 
one another across space and scales. Not utilizing this information (i.e. pixel-based classification) or ignoring 
to identify spatial or hierarchical relationships does not fully exploit the information that can be obtained from 
delineation and classification of objects. Our results provided further support that including hierarchical struc-
ture to objects offers contextual information that can increase classification accuracy beyond what is provided 
by texture and spectral alone.

Data availability
Please contact the authors for data and material related to this work.
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